Sensitivity analysis with GP emulator for cardiovascular modelling

Alessandro Melis

➤ a.melis@sheffield.ac.uk

Dr. A. Marzo Prof. R.H. Clayton

> The University of Sheffield Department of Mechanical Engineering

Quantifying uncertainty in multiscale models for biomedical applications

INSIGNEO

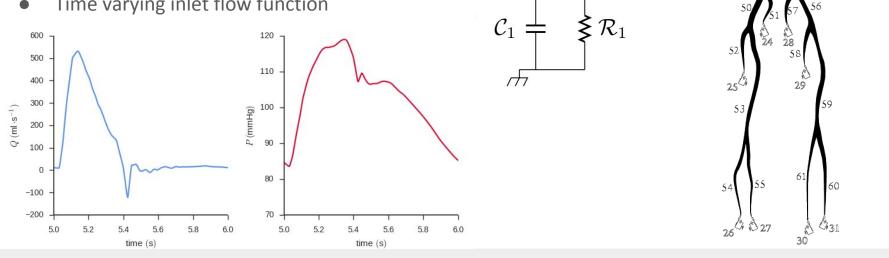
The Edge, Sheffield, UK 21 April 2017

Outline

- 1D vascular models
- Sensitivity analysis
- Scalability issue
- Gaussian process
- Cerebral vasospasm
- Results
- Conclusions

1D cardiovascular models

- Simple mechanical description:
 - Length, radius, Young's modulus Ο
 - Network topology Ο
- Lumped parameters outlet BCs
- Time varying inlet flow function

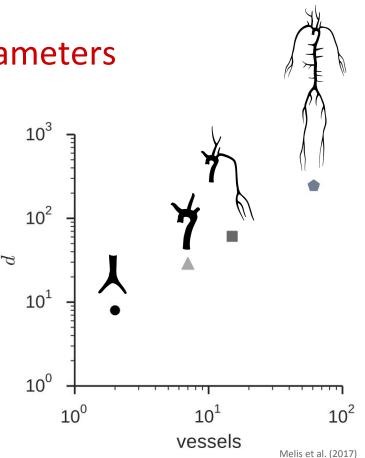


 \mathcal{Z}_1

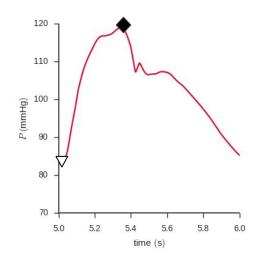
10 11

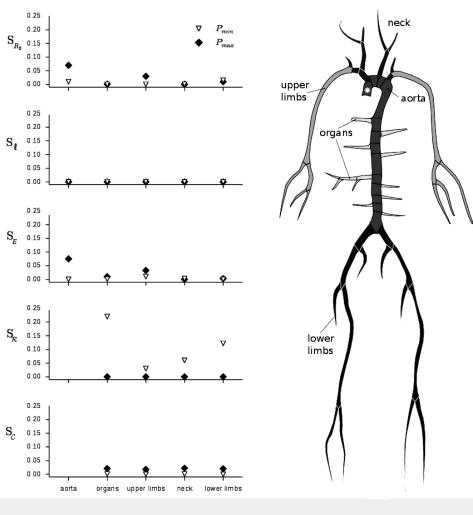
1D cardiovascular models: parameters

- *d* number of parameters
- Linear increase with number of vessels
- Ideally, all the parameters should be directly measured on the subject
- Sensitivity analysis:
 - Parameter ranking
 - Parameter fixing



Sensitivity analysis



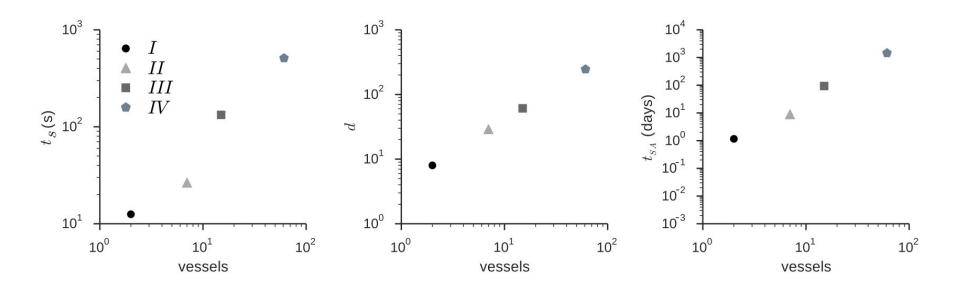


Melis, A., Clayton, R. H., and Marzo, A. (2017) **Bayesian sensitivity analysis** of a 1D vascular model with Gaussian process emulators. Int. J. Numer. Meth. Biomed. Engng., doi: 10.1002/cnm.2882.

INSIGNEO

Quantifying uncertainty in multiscale models for biomedical applications - The Edge, Sheffield, UK - 21 April 2017

Scalability

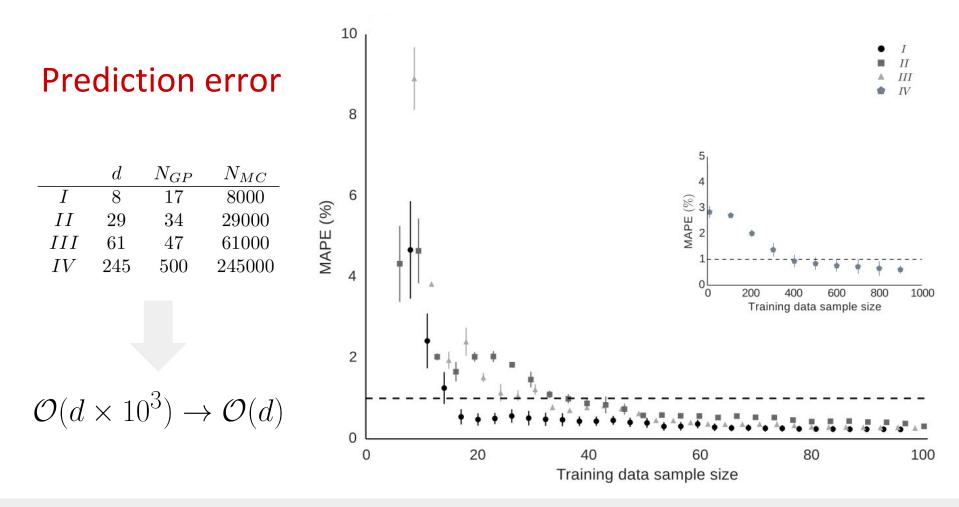


Gaussian process predictions

Simulator Gaussian process 8 8 7 7 6 6 5 5 *c* (m/s) 4 4 3 3 2 2 0 0 2e+06 4e+06 8e+06 1e+07 1.2e+07 6e+06 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 E (Pa) μ (P)

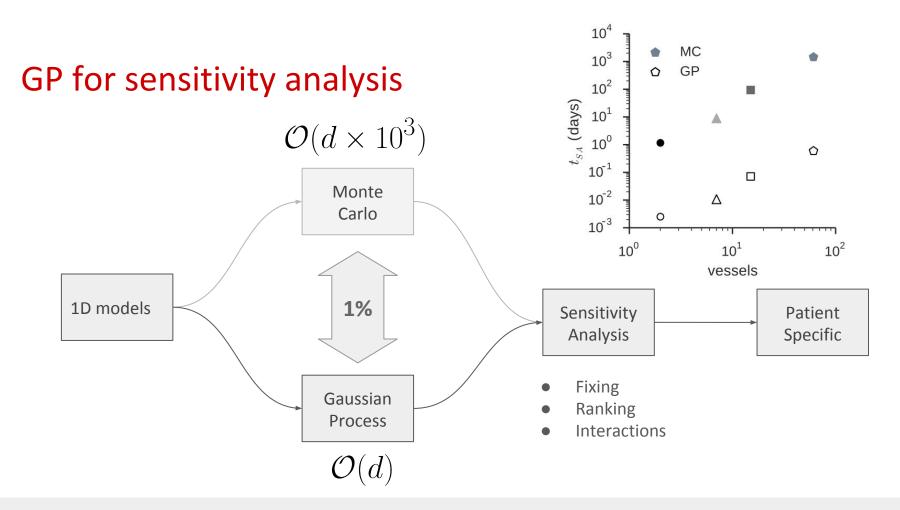
Quantifying uncertainty in multiscale models for biomedical applications - The Edge, Sheffield, UK - 21 April 2017

Melis et al. (2015) CMBE2015 proceedings



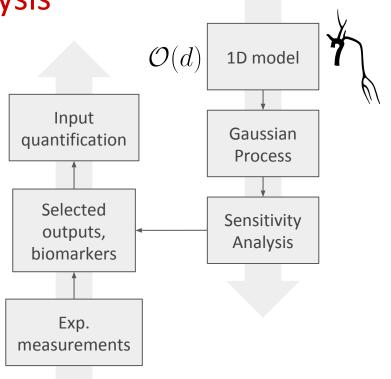
INSIGNEO

Quantifying uncertainty in multiscale models for biomedical applications - The Edge, Sheffield, UK - 21 April 2017

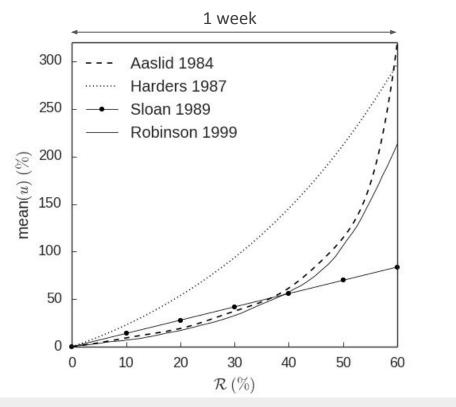


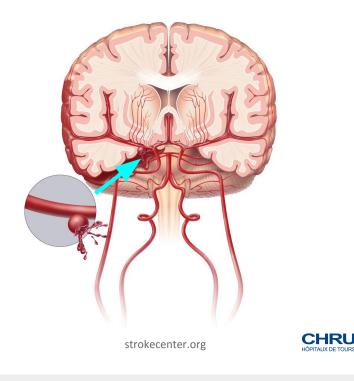
Biomarkers from sensitivity analysis

If inputs are unknown and we notice a change in one of the outputs, can we identify the input more likely to cause this change?



Cerebral vasospasm (CVS)





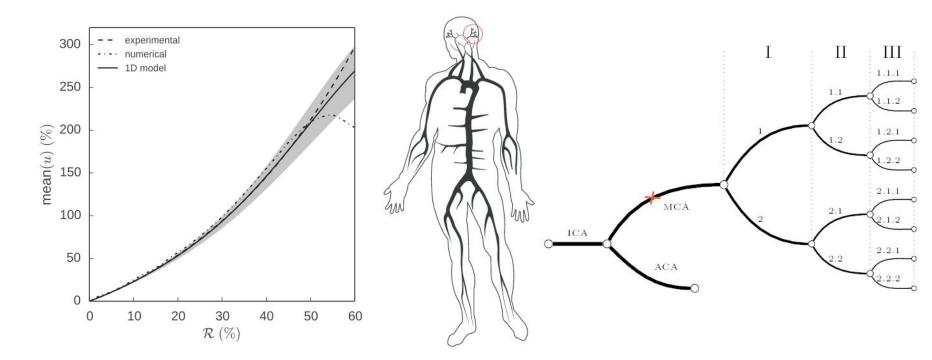
Research questions

- \succ Are there multiple types of CVS?
- Are there more effective biomechanical metrics (biomarkers) for CVS detection?

More effective = more sensitive to changes in lumen radius <u>only</u>

Can we classify the type of CVS upon biomarker readings?

Cerebral vasospasm: 1D model



Melis et al. (2017) IEEE Trans. Biom. Eng. [in review]

Cerebral vasospasm: sensitivity analysis

- 17 vessels
- 5 parameters
- +/- 50% variation
- 27 features measured on MCA waveforms
- 50 model runs for GP training
- SA dataset generated through GP regression

Sensitivity analysis results

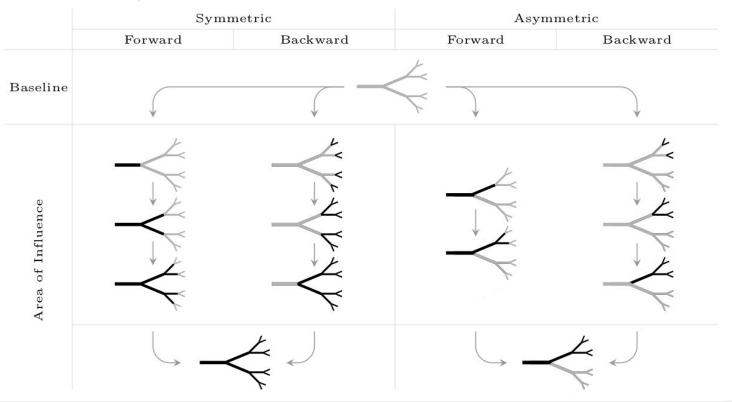
Include only

- T > 90%
- H < 5%

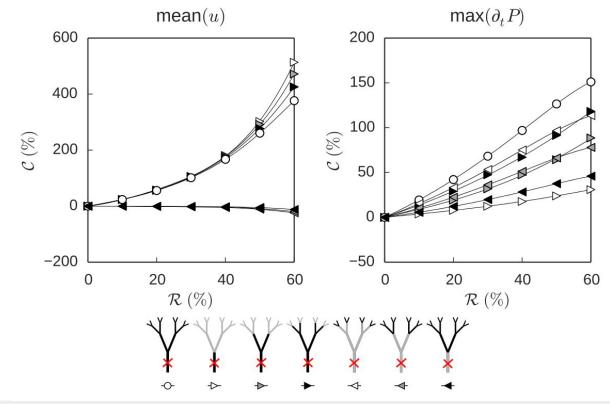
CV biomarker	\mathbf{T}_{R_0}	\mathbf{H}_{R_0}
 \rightarrow mean(u)	97.43	0.82
$\max(u)$	97.28	0.84
$\min(u)$	97.23	0.93
$\max(\partial_t u)$	96.83	0.90
$\min(\partial_{tt}P)$	93.76	3.62
$\max(\partial_{tt}P)$	93.05	3.35
$\min(\partial_{tt}u)$	92.98	1.16
 $\rightarrow \max(\partial_t P)$	92.52	3.18

			\mathbf{T}_i					\mathbf{H}_i		
$\min(P)$	1	1	1	99	0	0	1	1	3	0
$\min(\partial_t P)$	90	7	6	0	2	5	3	5	0	1
$\min(\partial_{tt}P)$	94	6	4	0	0	4	3	3	0	0
$\min(Q)$	71	22	36	7	6	66	24	23	5	2
$\min(\partial_t Q)$	88	5	12	0	4	10	1	6	0	1
$\min(\partial_{tt}Q)$	73	7	25	1	5	8	4	9	0	0
$\min(u)$	97	0	2	0	0	1	1	1	0	0
$\min(\partial_t u)$	89	1	6	0	6	4	2	5	0	1
$\min(\partial_{tt}u)$	93	1	5	0	1	1	2	3	0	0
mean(P)	3	0	1	98	0	0	0	0	3	0
$\operatorname{mean}(\partial_t P)$	50	33	46	9	5	32	23	33	1	3
$mean(\partial_{tt}P)$	31	50	41	32	0	31	49	45	3	0
mean(Q)	81	9	17	14	4	60	36	52	14	2
$\operatorname{mean}(\partial_t Q)$	59	54	54	0	1	46	43	43	1	0
$mean(\partial_{tt}Q)$	65	35	65	0	1	54	27	46	1	1
mean(u)	97	0	2	0	0	1	1	1	0	0
$mean(\partial_t u)$	92	4	13	2	0	8	2	11	0	0
$mean(\partial_{tt}u)$	88	16	35	0	2	29	10	28	0	2
$\max(P)$	18	1	2	81	0	1	1	1	3	0
$\max(\partial_t P)$	93	7	4	0	1	3	3	4	0	0
$\max(\partial_{tt}P)$	93	6	4	0	1	3	3	4	0	0
$\max(Q)$	92	3	16	4	1	41	5	24	4	1
$\max(\partial_t Q)$	86	2	17	3	2	28	1	15	2	1
$\max(\partial_{tt}Q)$	83	8	13	0	6	9	4	7	0	0
$\max(u)$	97	0	2	0	0	1	1	1	0	0
$\max(\partial_t u)$	97	1	2	0	0	1	1	1	0	0
$\max(\partial_{tt} u)$	88	3	8	0	5	3	3	4	0	0
	R_0	E	l	R_p	C_p	R_0	E	l	R_p	C_p

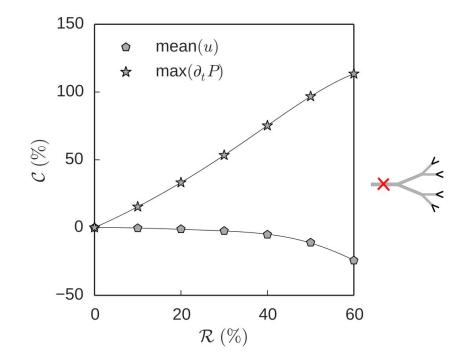
Cerebral vasospasm simulations



Biomarkers



Biomarkers comparison



Conclusions

- Sensitivity analysis:
 - Reduce model dimensionality (ranking and fixing)
 - Measurements *reverse engineering*
 - Requires large amount of data
- Gaussian process:
 - Trained on few runs of the deterministic model (computationally cheap)
 - Generates the dataset for SA computation
- Cerebral vasospasm:
 - $\circ \quad \text{Identified CVS types} \\$
 - Identified biomarker sensitive to CVS only (through SA)
 - CVS types classification based on biomarker
 - Basis for further experimental validation

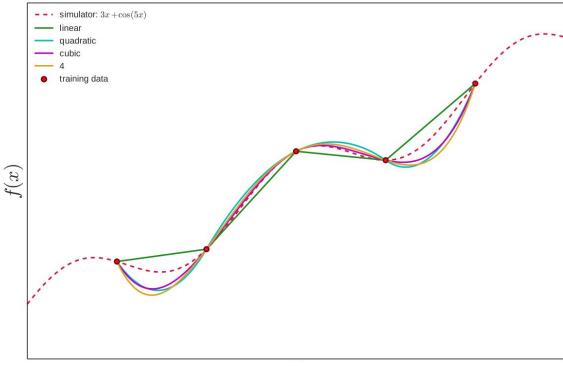
Dr. A. Marzo Prof. R.H. Clayton

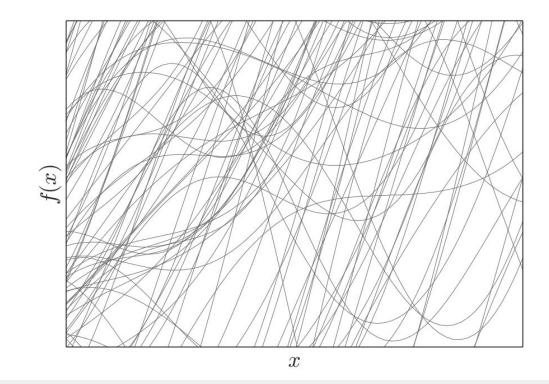
> The University of Sheffield Department of Mechanical Engineering

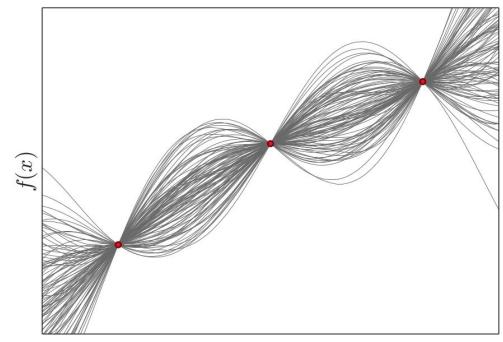
Quantifying uncertainty in multiscale models for biomedical applications

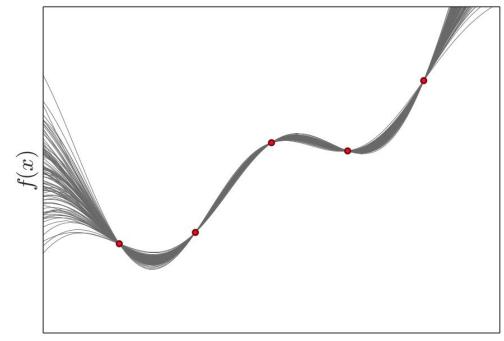
Institute for in silico Medicine

Interpolation

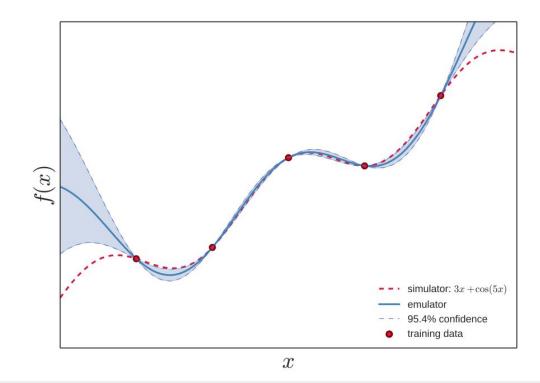








Gaussian process



Gaussian process

