
 

Section information

The Ageing Vascular System
Alessandro Melis
27/01/2014



 

Section information

Aim and layout
Project aim: to analyse and model the effects of age on pulse wave 
propagation within the cardiovascular system by means of 
numerical methods.

Presentation layout

■ Introduction
■ Physiology of the vascular system.
■ Pulse wave propagation and velocity.
■ Clinical relevance.

■ Methodology
■ Fluid dynamics fundamental concepts and equations.

■ Dimensionality reduction and trade-offs.

■ Future plans
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Cardiovascular system

■ Heart (4 chambers/4 valves pump).

■ Systemic/pulmonary circulation.

1. Aorta, large arteries, small arteries, 
arterioles, capillaries (branching).

2. Aorta → capillaries: A↓, stiffness↑
3. Pulse pressure propagates as a 

wave.

Cardiovascular system [1].



 

Section information

Pulse wave velocity

Characterised by the propagation medium (elastic vessel).

■ E Young’s modulus (stiffness).
■ h wall thickness.
■ r vessel radius.
■ ρ blood density.

Moens-Kortweg 
pulse wave velocity.
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Waveforms

Ascending aortic pressure (top) and blood flow velocity (bottom) 
waves recorded in a human [2].

t

■ Measurement in a point.

■ Propagation of pressure 
through the entire system: 
waves carry information.
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Waves reflection and transmission

Changes in geometry such as:

■ bifurcations and 
anastomosis,

■ changes in wall thickness,
■ tapering,
■ changes of stiffness,

constitute reflection sites.

The result is the generation 
of backward travelling waves 
that interact with forward 
travelling ones. 
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Waveforms

Ascending aortic pressure (top) and blood flow velocity (bottom) 
waves recorded in a human [2].

t

■ Superimposition of forward 
and backward travelling 
waves.
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Clinical context
Vascular disorders are primarily related to arteriosclerosis 

(hardening of the arteries) and usually affects all humans as part 
of the aging process. 

Moreover, elastic artery stiffness and wave reflections are 
increased in patients with:

■ Coronary artery disease (Gatzka et al., 1998).
■ Myocardial infarction (Hirai et al., 1989).
■ Hypertension (Benetos et al., 2002).
■ Stroke (Lehmann et al., 1995).
■ Diabetes mellitus (Wilkinson et al., 2000).
■ End-stage renal disease (Blacher et al., 1999).
■ Hypercholesterolemia (Wilkinson et al., 2002).
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Ageing

■ Wall properties.

Increase in incremental elastic modulus Ep with age in the 
proximal thoracic aorta (full circle) and proximal pulmonary artery 
(open circle) of human subjects [2].
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Ageing

■ Blood viscosity.

■ Wall properties.

Viscosity measured at a shear rate of 450/sec versus age and the 
solid line is a fit of the data to a third order polynomial [4].
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Ageing

■ → Wave 
velocity.

Increase in pulse wave velocity with age in the proximal thoracic 
aorta (full circle) and proximal pulmonary artery (open circle) of 
human subjects [2].
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Ageing

■ → Waveforms.

Typical pressure and flow waves recorded in three 
normotensive subjects aged 28, 52, and 68 years [2].
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Methodology
Fundamental principles: conservation laws

■ Mass is conserved → Continuity equation.
■ Momentum is conserved → Navier-Stokes equations.
■ Energy is conserved → Energy equation (rarely 

used).
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Continuity equation

“...what goes in must come out”.
m’

in
m’

ou

t

net mass flow out 
the control 
volume

time rate decrease 
of mass inside the 
element

or

Physical principle: mass is conserved.

mass flow: m’ = ρuA

net mass flow: m’ = m
out

- m
in
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Momentum equations

Physical Principle: ma = F.

F

Body forces
(weight, EM)

Surface forces

Pressure Viscous

mass times the 
acceleration of 
the element

net force on the 
fluid element
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Physical Principle: ma = F.

mass times the 
acceleration of 
the element

net force on the 
fluid element

Momentum equations
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Dimensionality reduction
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■ A: vessel cross-sectional 
area. 

■ h: wall thickness.
■ l : segment length.

Dimensionality reduction

l
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By expressing the equations in terms of the cross sectional 
area A, and the flow Q = uA, we obtain

with α, γ, ν, E, h, A
0
 constants.

■ 2 equations + 1 
constitutive 
relation.

■ 3 unknowns.
■ 3 variables to 

be known for 
each segment.
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By integration between the inlet and outlet we obtain

Eventually, for a generic vessel segment (compartment)

1 inlet, 2 outlet.
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■ Flow Q.

■ Pressure P.

■ Inertance L = L(ρ,A).

■ Resistance R = R(ρ,A,μ).

■ Compliance C = C(A,E,h).

Qi Qi+1

Lumped parameter (0D) description
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Multi compartment 0D model

A sample complete circulatory system model [9].
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3D

★ Physically accurate i.e., 
waves transmission and 
reflection are modelled 
directly.

★ Flow solution in every 
point of the system.

❖ Computationally 
expensive.

❖ Boundary conditions may 
be difficult to find (needs 
extremely accurate 
geometry).

❖ Numerical solution.

1D

★ Simulate pulse wave 
transmission and 
reflection.

★ Computationally faster 
than 3D implementation.

★ Provide boundary 
conditions to 3D models.

❖ PDE: numerical solution.
❖ Solution obtained for the 

vessel mean line under 
physiological assumptions.

0D 
(multi-compartment)

★ ODE: analytical solution.
★ Computationally efficient.
★ May provide boundary 

conditions to 1D/3D 
models.

★ The existing code (state 
space method) is a 
novelty.

❖ Parameterization and 
calibration issues.

❖ Loss of physical meaning.
❖ Complex implementation.

Pros Cons
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Multi scale modelling
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Future work

■ Parameterisation of existing models.

■ Validation with data from literature.

■ Comparison 0D vs. 1D.

■ Extend to include branching and anastomosis.

■ Parameterisation to include age effects on blood and tissues.

■ Multi scale model (?).
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THANK YOU!
Questions?
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Arterial flow modelling
Model dimensionality

■ 3D
■ Numerical solution.
■ The solution (velocity, pressure, etc..) 

can be obtained for all the points in 
the domain.

■ Need to specify accurate boundary 
conditions and geometry.

■ Aside from numerical errors, it 
provides a physically correct solution 
of the problem (transmission and 
reflection of pressure waves).

Left ventricle 3D CFD simulation.
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Arterial flow modelling
Model dimensionality

■ 3D
■ 2D

■ Rarely used.
■ Study of the flow along 

the longitudinal section 
of the vessel.

2D simulation of a pressure pulse entering in a generic elastic vessel [13].
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Arterial flow modelling
Model dimensionality

■ 3D
■ 2D
■ 1D

■ Simplified equations (assumptions 
physiologically valid). 

■ PDE system which requires numerical 
solution.

■ Waves transmission and reflection 
are preserved.

■ Simplified geometry and boundary 
conditions.

Schematic representation of the arterial tree 
for 1D blood flow modelling [12].



 

Section information

Arterial flow modelling
Model dimensionality

■ 3D
■ 2D
■ 1D
■ 0D

■ ODE system: analytical solution.
■ May capture pulse wave 

transmission effects.
■ Loss of physical meaning of the 

solution.
l circuit [7].


